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抗菌肽—癌症治疗的新兴方法
吕宇蝶1  邵罡1  蒙月明2  金园庭1*  付彩云2*

 (1中国计量大学生命科学学院, 杭州 310018; 
2浙江理工大学生命科学与医药学院, 浙江省家蚕生物反应器和生物医药重点实验室, 杭州 310018)

摘要      抗菌肽是由生物体诱导产生的小分子多肽。大多数抗菌肽在体内发挥着抗微生物和

免疫调节的作用。抗菌肽的抗菌机制主要是通过细胞膜穿孔和靶向细胞内细胞器的生理过程。抗

菌肽具有促炎和抗炎、皮肤屏障和维持生物体内稳态等免疫调节功能。近年来, 抗菌肽在各种癌

症发生发展中的作用研究也取得了很大进展。抗菌肽在生物体内微环境中通过多种信号转导途径, 
促进或抑制癌细胞增殖。该综述概述了抗菌肽的分类和生物学作用, 特别是在癌症治疗方面的进

展, 以便为癌症治疗提供新的治疗靶点和思路。
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Antimicrobial Peptides: An Emerging Category for Cancer Treatment
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Abstract       Antimicrobial peptides (AMPs) are small molecular peptides that are induced by organisms. 
Most AMPs play an anti-microbial and immunomodulatory role in the body. The antimicrobial mechanism of AMPs 
is mainly through cell membrane perforation and physiological processes that target intracellular cells. AMPs have 
functions in immunomodulatory including pro-inflammatory and anti-inflammatory, skin barriers and maintenance 
of the homeostasis of the organism. In recent years, the role of AMPs in the development of various cancers has also 
made great progress. AMPs play an important role in promoting or inhibiting proliferation of cancer cells through 
multiple signaling pathways in the microenvironment. In this review, we provided a conspectus of the classification 
and biological roles of AMPs, especially on cancer treatment, in order to provide new therapeutic targets and ideas 
for cancer therapy.
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Antimicrobial peptides (AMPs), also known as 
host defense peptides, are polypeptides produced by 
organisms that have antibacterial activity and play 
an important role in many immune systems. To date, 
more than 3 000 AMPs have been discovered and most 
AMPs are isolated from animals and plants (http://aps.

unmc.edu/AP/main.php). AMPs are short peptides that 
usually composed of 10-50 amino acids[1]. Hydrophobic 
amphiphiles and cationic amino acids are spatially 
arranged. Because of the presence of Lys and Arg 
residues, many AMPs are cationic peptides, and the net 
charge is usually +2 to +9[2-3].
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Most antibiotics act on intracellular targets, mak-
ing bacteria more susceptible to mutations[4], while 
natural AMPs have broad-spectrum resistance to 
microorganisms, low ability to induce bacterial resistance, 
indicating that AMPs become the most potential 
alternative to antibiotics[5]. AMPs have multiple functions 
such as antibacterial[6-7], antifungal[8-9], antiviral[10-11], and 
anticancer[12-13], as well as regulation of pro-inflammatory 
and anti-inflammatory physiological responses through 
innate and adaptive immunity[14], participating in the 
regulation of autophagy and apoptosis, maintains 
homeostasis[15-18].

More importantly, besides a high antimicrobial 
activity, low cytotoxicity is also a desirable characteristic 
for AMPs as potential anticancer drug candidates. 
The microenvironment secretes abundant AMPs such 
as LL-37 which also play an important role in cancer 
development[19]. Because of the fact that the plasma 
membrane components of the cancer cells are changed 
to be rich of the anion, which provides a basis for the 
cationic AMPs disrupting the membrane of cancer cell[20]. 
Accumulated evidence showed that a variety of AMPs 
have a role in the development of lung cancer[21-23], breast 
cancer[24-25], prostate cancer[26-27], pancreatic cancer[19], 
melanoma[28-29], bladder cancer[12], ovarian cancer[30-32], 
and leukemia[33-35], etc. 

This review, inspired by a spate of recent studies 
of AMPs in human diseases and animal models, focuses 
on the classification and biological roles of AMPs, 
especially on cancer treatment, in order to provide new 
therapeutic targets and ideas for cancer therapy.

1   The classification of AMPs
AMPs are widely distributed in six kingdoms 

including bacteria, archaea, protists, fungi, plants, and 
animals. According to the source, function, electric 
charge, composition, and secondary structure, there 
are different ways to classify AMPs, and some of the 
classifications are overlapping.

1.1   Classification by source
According to different sources of AMPs, AMPs 

can be divided into mammalian AMPs, plant AMPs, 

aquatic biological AMPs, amphibian AMPs, and insect 
AMPs. Mammalian AMPs consist of defensins and 
cathelicidins[36-37]. Plant AMPs have been isolated 
from roots, seeds, flowers, stems, and leaves[38]. 
Aquatic AMPs are classified into aquatic crustacean 
and fish AMPs[39-41]. Amphibian skin is exposed to 
a moist environment, and different amphibian skins 
secret different AMPs[42]. Insect AMPs are widely 
distributed, mainly in Diptera, Lepidoptera, Coleoptera, 
Hymenoptera and Hemiptera[43].
1.2   Classification by function

According to the function of AMPs, AMPs can be 
divided into antibacterial peptides, antifungal peptides, 
antiviral peptides, and anticancer peptides. There may 
be synergistic effects between AMPs and AMPs or 
AMPs and antibiotics[44]. Antifungal peptides are found 
in animals, plants, insects, bacteria, and fungi, and some 
can bind to microbial surfaces and destroy cell walls[9]. 
Antiviral peptides protect organisms from infection 
before or after infection of cells[45]. Some AMPs have an 
anticancer effect. Some AMPs have a variety of functions, 
including antifungal, antibacterial, and anticancer.
1.3   Classification by electric charge

Depending on the electric charge, there are two 
types of AMPs, cationic AMPs, and anionic AMPs. 
Hydrophobicity and amphipathicity of cationic 
peptides affect the efficiency, pore size, and stability 
of cell membrane pore formation, but also increase 
toxicity in vivo and in vitro[46-50]. Anionic AMPs are 
negatively charged without basic amino acid residues, 
which can anchor biofilms through their hydrophobic 
regions, charge interactions, dissolve and penetrate the 
membrane[51-53].
1.4   Classification by composition

According to the composition, AMPs can be divided 
into cecropins, defensins, glycine-rich melittin, and 
proline-rich bombesin[54]. Most cecropins have 31-
39 amino acid cationic AMPs without cysteine to 
form the helix-hinge-helix structure through the 
amphiphilic N-terminal and the hydrophobic C-terminal 
segment[55-56]. Defensins, rich in Cys residues, are divided 
into three subclasses of α-defensins, β-defensins, and 
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θ-defensins according to the structure of the disulfide 
bond, which have very similar tertiary structure[16]. 
α-defensins are mainly derived from neutrophils, also 
known as human neutrophil peptides (HNPs, HNP1-
4), in which HNP3 can also be found in monocytes, 
NK cells, and part of mucosal cells[57-58]. β-defensins are 
isolated from bovine tracheal epithelial cells, and four 
β-defensins (hBD-1-4) can be induced by the stimulation 
of microorganism[59-63]. θ-defensins were first discovered 
in rhesus neutrophils and monocytes with a smaller 
structure and weaker amphiphilic shapes, but θ-defensins 
have a significant effect on HIV[64-66]. Melittin is the main 
component of bee venom. It is composed of 26 amino 
acids with the hydrophobic amino acid at the N-terminus 
and a hydrophilic residue at the C-terminus. It can 
induce the release of anti-inflammatory factors and 
exert multiple physiological functions; however, it also 
has strong hemolytic properties[47,67-70]. The Magainin is 
rich in proline, that is isolated from the skin of Xenopus 
laevis with broad-spectrum antimicrobial activity[71].
1.5   Classification by secondary structure

According to the secondary structure of AMPs, 
AMPs can be divided into three categories[72], including 
the linear peptide with the α-helical structure or 
the β-sheet structure, and the polypeptide with the 
ring structure[73-75]. The α-helix structure in AMPs is 
important for maintaining antibacterial activity, which 
acts as a membrane solubilizing agent in anti-microbial. 
But AMPs with highly helical structure will produce 
hemolysis effects, such as bombesin, cecropin, and 
melittin[76-78]. AMPs have a β-sheet structure that usually 
contains disulfide bonds with the number of one to four 
like the defensin[79-82].

2   The biological activities of AMPs
2.1   Antimicrobial activity

AMPs have a killing effect on microorganisms 
such as bacteria, fungi, bacterial biofilms, viruses, 
and parasites, in which the most striking feature is its 
antibacterial activity[5]. AMPs have two modes of killing 
microorganism. One is that AMPs act on the membrane 
to form pores on the cell membrane and impair the 

integrity of the cell membrane, resulting in the leakage 
of cell contents and cell death[83]; another is that AMPs 
target physiological processes in cells to inhibit cell 
respiration or DNA replication and transcription, and 
target organelles[84-86]. 

Most cationic AMPs interact with the surface of 
bacteria which has negatively charged[50] to damage the 
cell membrane through the classic models such as barrel-
stave model[87], carpet model[88], and toroidal model[89]. 
The α-helical region of AMPs is bound by a hydrophobic 
interaction monomer, inserted into the membrane in 
parallel or vertically to form a barrel wall[90-91]. The carpet 
model is a kind of detergent-like mechanism that covers 
the surface of the membrane like a carpet after reaching 
the threshold concentration by AMPs[92]. The toroidal 
model is that AMPs are perpendicular to the membrane, 
but the internal and external structure of the phospholipid 
membrane is intact[77,93].

After entering the cell, AMPs can inhibit cell wall 
formation, nucleic acid synthesis, protein synthesis 
or enzyme activity[50,94]. Proline-rich AMPs bind to 
ribosomes, interfere with protein synthesis, and induce 
false protein folding[95-96]. For example, Histatin 5 
specifically binds to Candida albicans cell membrane to 
induce ATP release and pathogen death[97].

Bacteria usually live in the multicellular community 
of biofilms, and some AMPs also have a good inhibitory 
effect on biofilms[98-99]. AMPs are often used in 
conjunction with antibiotics to exert immunomodulatory 
properties to treat biofilm infections[100-101]. AMPs can 
destroy viral envelopes, bind viral RNA polymerase 
complexes, inhibit viral replication, kill viruses, and 
prevent viral infections[102-104]. It has been reported that 
NP-1 peptide can interfere with the heparan sulfate 
receptor site on the plasma membrane of the cell to 
prevent HSV-2 infection[105].
2.2   Immunomodulatory activity

AMPs are part of the human innate immune 
system and are involved in multiple immune regulations, 
including anti-inflammatory, pro-inflammatory, skin 
immune barriers, and maintenance of biological 
homeostasis[106]. When the pathogen stimulates the body, 
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the immune response in the body is initiated, and the 
AMPs play an important role in anti-inflammatory and 
pro-inflammatory (Fig.1).

AMPs have the function of eliminating infection 
and regulating inflammation[107]. Host defense peptides 
such as LL-37, HNP-1, HNP-2, hBD-1, and hBD-
2, indirectly promote immune cells like neutrophils, 
monocytes, and lymphocytes to the inflamed area[108]. The 
chemotactic properties of defensins and cathelicidins 
on neutrophils, monocytes, and T cells are mediated by 
human CC chemokine receptor 6 and formyl peptide 
receptor-like 1, indirectly promoting immune cell 
recruitment[109]. LL-37 also up-regulates chemokine 
MCP-1 and chemokine receptors CXCR-4, CCR2 
and IL-10, and inhibits LPS-induced downstream NF-
κB pro-inflammatory genes, NF-κB1 (p105/p50), 
TNF-α induction protein 2 (TNFAIP2) and interleukin 
(IL)-1β[101,108,110-111]. OH-CATH30 is a kind of AMP 
isolated from King Cobra protects mice with lethal 
sepsis by activating MAPK signaling pathway through 
macrophages[112]. LL-37 not only can kill bacteria but 

also activates FPRL1 and P2X7 to inhibit neutrophil 
apoptosis and prolong its lifespan, accompanied 
by increased reactive oxygen species or induced 
autophagy[113-114].

However, some studies also showed that AMPs 
have pro-inflammatory effects. Defensin released 
from neutrophils can increase bacterial phagocytosis 
by stimulating the production of TNF and IFNγ by 
macrophage to increase the expression of CD32 
(FcγRIIB) and CD64 (FcγRI)[115]. LL-37 and HBD are 
conjugated to the G protein-phospholipase C pathway 
on mast cells, and the pro-inflammatory cytokine IL-
18 can also be induced via the p38 and ERK1/2MAPK 
pathways[116]. LL-37 also induces the activation of p38 
and ERK1/2 kinase in monocytes and epithelial cells[117].

Endogenous AMPs protect the skin from infec-
tion and accelerate skin proliferation. Studies have 
shown that LL-37 is strongly expressed in healing 
skin epithelium and neonatal skin[118-120]. Epidermal 
keratinocytes develop an innate immune barrier based 
on hBD and LL-37 during differentiation[121].

当病原体刺激时, 抗菌肽可以激发上皮细胞和免疫细胞产生促炎因子。中性粒细胞分泌的抗菌肽可以激活CD32和CD64, 增加对细菌吞噬作用。

促炎反应由红色箭头指示, 抗炎反应由黑色箭头指示。抗菌肽能激活MAPK信号通路来保护生物体。抗菌肽能间接性促使免疫细胞向感染募

集以增加抗炎反应。抗菌肽还能激活FPRL1和P2X7受体来抑制中性粒细胞凋亡。

When pathogens stimulate, epithelium and immune cells produce pro-inflammatory factors  stimulating by AMPs. Neutrophils secrete AMPs which 
activate CD32 and CD64 to increase bacterial phagocytosis. The pro-inflammatory response is indicated by a red arrow while the anti-inflammatory 
response is indicated by a black arrow. MAPK signaling pathway is activated to protect organisms. Immune cells are chemotactic and indirectly 
recruited to increase anti-inflammatory response. AMPs activate FPRL1 and P2X7 to inhibit neutrophils apoptosis.

图1   抗菌肽的免疫调节活性

Fig.1   The immunomodulatory activity of AMPs
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LL-37 and alpha-defensins regulate angiogenesis 
via endothelial cell adhesion and migration in a 
fibronectin (FN)-dependent manner[122-123]. AMPs 
are involved in the regulation of intestinal microbial 
commensal and pathogenic bacteria interactions 
in intestinal epithelial cells[124]. One of the AMPs, 
β-defensin-3, plays a role in mammalian ovarian 
development via the ERK1/2 pathway[125].
2.3   Anticancer activities
2.3.1   Melanoma      In melanoma cells, the over-
expression of AMPs LL-37 can induce the binding protein 
YB-1 expression through NF-κB signaling pathway 
to promote malignant melanoma cell proliferation, 
migration, and invasion[126-127]. In melanoma A375 cells, 
LL-37 can bind to the gene promoter region. If the LL-37 
gene is silenced, the transcriptional program associated 
with histone, metabolism, cellular stress, ubiquitination 
and mitochondria are changed[128]. LL-37 is an 
endogenous agonist of the TRLs family, including TRL1-
4, which has been shown to have important effects on 
the proliferation and migration of melanoma cells[129-130].

Other AMPs can inhibit the proliferation of 
melanoma cells by interfering with the structure of cell 
membrane and energy metabolism to induce apoptosis 
and cell cycle arrest. The plant AMP NaD1 promotes 
destabilization and cleavage of the cell membrane by 
binding to the plasma membrane phosphatidylinositol 
4,5-diphosphate (PIP2) without entering the cell or 
causing apoptosis[131]. In mouse experiments, it was 
found that mastoparan, an AMP isolated from the 
venom of wasp, can kill melanoma cells and induce 
caspase-dependent apoptosis through the mitochondrial 
pathway[132]. In addition, the AMPN is in Z reduces the 
invasion, proliferation, and metastasis of melanoma 
cells by negatively affection the energy metabolism 
(glycolysis and mitochondrial respiration) of melanoma 
cells, increasing the production of reactive oxygen 
species and causing apoptosis[133]. Spider peptide 
gomesin can activate the cycle-regulated protein p53/
p21 and Hippo signaling pathways, reduce the ratio of 
G0/G1 phase cells, and attenuate MAP kinase pathways 
to reduce melanoma progression[134]. The cathelicidin-5 

with a modified structure inhibits melanoma by 
both membrane and non-membrane decomposition 
mechanisms in vitro and in vivo[135].
2.3.2   Lung cancer      Lung cancer is one of the most 
deadly cancers in the world[136]. Different AMPs have 
different effects on lung cancer. hCAP-18/LL-37 is highly 
expressed in human lung cancer tissues and promotes 
lung cancer development by inducing phosphorylation of 
epidermal growth factor receptor (EGFR) and activation 
of downstream MAP kinase signaling pathway[137-138]. 
Regulation of cathelicidin expression involves bone 
marrow p65/RelA and soluble factors from tumor cells 
recruiting inflammatory cells to promote cigarette smoke-
induced lung tumor growth[21]. Additional study has also 
supported the promotion of lung cancer cells by the 
CRAMP gene, which has a lower tumor burden and 
longer survival time[139].

Human β-defensin-3 and its mouse homolog 
Defb14 show the inhibition of tumor growth in tumor 
model mice. Subcutaneous injection of AMPs in lung 
cancer mice significantly reduced tumor weight[140]. 
Tilapia-derived AMP penetrates cells and targets 
microtubule networks to kill lung cancer cells[141].
2.3.3   Prostate cancer      Prostate cancer is the third 
highest incidence of cancer in men after lung cancer 
and colorectal cancer[136]. CRAMP, an AMP isolated 
from prostate cancer cell-derived mouse, regulates the 
expression of growth factors and cytokines M-CSF 
and MCP-1, as well as mediates early bone marrow 
cell differentiation and polarization into primitive M2 
macrophages through STAT3/6 signaling pathway to 
promote cell growth of prostate cancer[142]. CRAMP 
expression is significantly higher in mouse prostate 
tumors than in normal tissues, and knockdown of 
CRAMP decreases proliferation, invasion and type IV 
collagenase of prostate tumor cells via phosphorylated 
Erk1/2 and Akt signaling pathway in vitro[143].

Lactoferrin is a functional carrier internalizes 
doxorubicin through receptor-mediated endocytosis 
into prostate cancer cells to enhance immunity and 
complement chemotherapy[144]. The AMP of Ranatuerin-
2PLx isolated from the skin secretions of the pickerel 
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frog inhibits the proliferation of prostate cancer cells 
through inducing apoptosis[145]. The specific human 
defensin-1 deletion was found in human prostate cancer 
cells, exogenous human defensin-1 can inhibit prostate 
cancer cell proliferation, indicating human defensin-1 is 
a candidate tumor suppressor gene[146].
2.3.4   Breast cancer      LL-37 is an important part of the 
congenital defense in human mammary epithelium[147]. 
The study founds that LL-37 is strongly expressed in 
breast cancer cells but not expressed in stromal cells, and 
the up-regulation of hCAP18/LL-37 is closely related to 
the expression of ERB2 in breast cancer cells. hCAP18/
LL-37 amplifies MAPK signaling through ErbB2 which 
is stimulated by breast cancer cells to promote breast 
cancer cell growth and migration[148-149]. LL-37 can act 
as a partial agonist of IGF-1R, followed by the binding 
of β-arrestin-1 to IGF-1R to drive intracellular signaling, 
resulting in increased migration and invasion potential 
of malignant cells[150]. It has also been reported that LL-
37 is an agonist of CXCR4 to enhance breast cancer 
migration and promote breast cancer development[25]. 
However, the natural antimicrobial plant defensin PvD1 
interferes with the formation of solid tumors in the 
breast while it can inhibit metastasis of breast cancer 
cells[151]. 
2.3.5   Colon cancer      LL-37 activates the GPCR-p53-
Bax/Bak/Bcl-2 signaling cascade to trigger AIF/EndoG-
mediated apoptosis in colon cancer cells, as well as 
LL-37 induces non-caspase-dependent apoptosis and 
even inhibits the activity of some related enzymes[152]. 
LL-37 also inhibits colon cancer development by 
interfering with EMT (epithelial-mesenchymal 
transition) and fibroblast-supported proliferation of 
colon cancer cells[153]. Lactoferrin is involved in colon 
cancer suppression by apoptosis caused by elevated 
Fas expression[154]. Circular LfcinB and linear LfcinB 
exert antitumor activity by differentially activating 
various signaling pathways including p53, apoptosis and 
angiogenin signaling. Western blot results confirmed 
that both bLf and LfcinBs increased the expression of 
caspase-8, p53, and p21 which are key proteins in tumor 
suppression[155].

The mechanisms involved in the apoptosis induced 
by cationic AMPs KT2 and RT2 are accompanied by 
the down-regulated expression levels of Bcl-2, cyclin 
B1 and D1, as well as the up-regulated expression levels 
of p53, cytochrome c, caspase-2, caspase-3, caspase-8, 
and caspase-9, and cyclin p21[156]. hBD-3, produced 
by tumor-infiltrating monocytes, inhibits the migration 
instead of proliferation in colon cancer cells in a dose-
dependent manner[157]. HNP1-3 is significantly increased 
in the plasma of patients with colorectal cancer, 
suggesting that HNP1-3 is a prognostic assessment 
marker and a potential marker of chemotherapy of 
colorectal cancer patients[158]. 
2.3.6   Gastric cancer      Chronic gastritis is associated 
with tumor formation in the stomach. LL-37 has high 
expression in gastric inflammation and low expression 
in gastric tumor tissues, indicating that LL-37 may 
play an inhibitory role in gastric canceration[159-160]. LL-
37 is down-regulated in gastric adenocarcinoma and 
activates BMP signaling via a proteasome-dependent 
mechanism to inhibit gastric cancer cell proliferation[161]. 
LFcinB25 induces the activation of apoptosis-associated 
caspase-3,7,8,9 and PARP, as well as the increase of 
autophagy-associated LC3-II and beclin-1 simul-
taneously during the treatment of LFcinB25 for 2 to 
6 hours. Therefore, both apoptosis and autophagy are 
involved in the early stages of LFcinB25-induced 
the gastric cancer cell line AGS to death. Later, 
LC3-II began to decrease, while cleaved beclin-1 
increased in a time-dependent manner, indicating that 
continuous activation of caspase cleaves beclin-1 to 
inhibit autophagy and thereby enhance apoptosis[162]. 
Lactoferrin inhibits Akt activation and regulates its 
downstream protein phosphorylation of apoptosis in 
SGC-7901 human gastric cancer cells[163]. Melittin 
induces apoptosis in human gastric cancer (GC) cells via 
the mitochondrial pathway[164]. 

CopA3 is an AMP identified from Copris tripartitus 
that causes necrosis of gastric cancer cells primarily 
through interaction with phosphatidylserine[165]. HNPs 
1-3 increase nearly tenfold in gastric cancer tissue and 
have potential as biomarkers for gastric cancer[166]. Some 
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synthetic AMPs not only have good antibacterial activity 
but also have a good inhibitory effect on cancer cells. 
Treatment of gastric cancer cells with synthetic cationic 
AMPGW-H1 inhibits cell proliferation by inducing 
apoptosis and autophagy[167].
2.3.7   Leukemia      Polybia-MPI is a short cationic 
α-helical AMP that is selectively toxic to leukemia cells 
and has no hemolytic activity. Polybia-MPI targets cell 
membranes of leukemia cells through plasma membrane 
perturbation[168]. LL-37-induces apoptosis in Jurkat T 
leukemia cells by caspase-independent while calpain- 
and AIF-dependent manner, involving Bax activation 
then translocation to mitochondria[169]. Lactoferrin 
triggers apoptosis through the mitochondrial pathway, 
producing reactive oxygen species to inhibit the 
proliferation of human leukemia and carcinoma cells[170]. 

Lactoferrin-derived peptides are concentrated in their 
helical structural regions, which induce snecrosis in 
leukemia cell lines (HL-60), and induces apoptosis in 
Jurkat T cell line via JNK-associated Bcl-2 signaling 
pathway[171-172]. Another lactoferrin-derived peptide is 
capable of inducing apoptosis in THP-1 tumor cells by 
producing intracellular ROS and activating Ca2+/Mg2+-
dependent endonucleases[173]. PFR peptide inhibits MEL 
and HL-60 leukemia cell proliferation by inducing 
necrosis and cell cycle arrest[174]. The goat AMP 
ChMAP-28 penetrates the cell membrane and destroys 
the integrity of leukemia cells to induce necrotic death 
of leukemia cells[175]. The molecular mechanisms 
of promotion and inhibition effects of AMPs on the 
proliferation of various tumors cells were shown in 
Fig.2.

A: 抗菌肽通过激活STAT3/6、NF-κB和MAPK信号通路来促进癌细胞的生长和迁移。另外, 抗菌肽是TRL和CXCR4的激动剂, 可促进癌症的发

展。B: 抗菌肽通过破坏膜结构和靶向细胞内生理反应来抑制癌细胞的增殖。抗菌肽可以通过不同的信号途径诱导癌细胞自噬, 坏死和凋亡。

抗菌肽还能通过靶向微管网络和细胞周期来抑制癌症。

A: AMPs promote growth and migration through activating STAT3/6, NF-κB, and MAPK signaling pathways. AMPs are an agonist of TRL and 
CXCR4 to promote cancer development; B: AMPs inhibit the proliferation of cancer cells by disrupting membrane structure and targeting intracellular 
physiological responses. AMPs can induce autophagy, necrosis, and apoptosis through the different signal pathway. Targeting microtubule networks and 
cell cycle are also ways to inhibit cancer.

图2   抗菌肽可以促进或抑制癌细胞的增殖

Fig.2   AMPs can promote or inhibit the proliferation of cancer cells
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3   Conclusion
AMPs can kill a variety of microorganisms, and 

the anti-microbial function is mainly through membrane 
lysis and targeting intracellular physiological processes. 
Most of the cationic AMPs act on the membrane to 
destroy membrane structure and release cell contents 
with the resultant microorganisms die. AMPs also 
can interfere with the basic physiological activities of 
cells, including protein synthesis and mitochondrial 
function. Although most of the AMPs have the ability 
to inhibit proliferation of tumor cells by apoptosis, 
necrosis and autophagy pathway. Recent evidence 
showed that some AMPs may have anti- and pro-
cancer characteristics through complex physiological 
regulation. For example, LL-37 has been reported to 
be involved in the development of various cancers, 
including melanoma, lung cancer, and prostate cancer. 
LL-37 promotes the proliferation of breast cancer cells 
indirectly; while LL-37 inhibits the proliferation of the 
cancer cells in colon cancer and gastric cancer through 
different pathways. Due to the low cytotoxicity and 
broad-spectrum activities of AMPs in antibacterial and 
anticancer, it is urgent to thoroughly investigate the 
effects and mechanism of AMPs, as well as to develop 
more efficient agents for cancer therapy.
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